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Topological-Fermi-liquid to quantum-Hall-liquid transitions: p-band and d-band fermions
in an external magnetic field
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We find that in a multiorbital system, the Hall conductance may exhibit anomalous topological quantum
phase transitions induced by on-site orbital polarization: both integer quantum-Hall (IQH) plateau transitions
and topological-Fermi-liquid (TFL) to IQH transitions. The unusual TFL-to-IQH transitions are peculiar mani-
festations of orbital degeneracy and spatial anisotropy, and are demonstrated explicitly in a p-band spinless
fermionic system and a d-band spinful fermionic system.
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I. INTRODUCTION

Recently, it is proposed that novel p-orbital physics, not
realized in solid-state systems, may exist in optical lattices,
and earlier attention has been paid on bosons in the first
excited p-orbital bands.! Rapid experimental advances in
loading and controlling alkali atoms on the excited bands
makes the p-orbital physics truly fascinating.” Correlated fer-
mions in the p-orbital bands possess more arresting behav-
iors, including Wigner crystallization, orbital ordering and
frustration.> Even for noninteracting p-band fermions, non-
trivial topological band structures arises from lifting the or-
bital degeneracy, and Haldane’s model of quantum
anomalous-Hall effect* can be realized.’

In parallel, for transition-metal oxides, the relevant active
orbitals are the partially filled five d orbitals. Recently, giant
spin-Hall and orbital-Hall effects have been found in transi-
tion metals and their compounds,® and many theoretical stud-
ies are based on realistic multiband 4d or 5d models.”” A
possible intrinsic origin of these giant Hall effects is the “or-
bital Aharonov-Bohm phase” which is induced by the atomic
spin-orbital coupling (SOC) and the phase of interorbital
hopping integrals characteristic of d-orbital systems.”?

Given the intensive current interest in possible novel
p-orbital and d-orbital physics which has not appeared in
single-orbital systems, we are motivated to study magne-
totransport properties of multiorbital fermions. We find that
the Hall conductance (HC) may exhibit anomalous topologi-
cal quantum phase transitions (QPTs) induced by on-site or-
bital polarization: integer quantum-Hall (IQH) plateau tran-
sitions and topological-Fermi-liquid (TFL) to IQH
transitions. Such topological QPTs are demonstrated in two
systems: a p-band spinless fermionic system which is pro-
posed to be realized with ultracold atoms in optical lattice’
and a d-band spinful fermionic system which is closely re-
lated to giant orbital-Hall effect in transition metals and their
compounds.”?

II. FORMULATION

The first model is a p-band system of p, and p, orbitals in
a two-dimensional (2D) square lattice filled with spinless
fermions coupled to an artificial uniform magnetic flux>>1°
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where p . creates a fermion of u=x,y p orbital at site r.
(z,) is the nearest- neighbor (NN) hopping integral in the
longitudinal (transverse) direction to each p-orbital orienta-
tion. #;,¢, >0, ¢, is one order of magnitude smaller than £,
and 7; will be taken as the unit of energy. A finite N induces
the rotation of each site around its own center, thus gives rise
to orbital polarization by lifting the degeneracy between
p.*ip, orbitals. >

The second model is a d-band system of d,,, and d,
orbitals (simplifying d,.,=d,, and d,. ,=d,,) in a 2D
square lattice filled with spinful fermions’$

Hy==1 2 [d)pidugrve, €Xplidherie) + He'l

r,o,u

+1 2 [ Xo,r }(r,r‘:exiey exp(id)r,rtextey) + H~C~]
-1 E [dm'r ur,riexiey exp(id)r,rtexiey) + H'C~]

+)\E(l xll‘}lr dTr+H.C.), (2)

where d . creates a fermion of w=xz,yz d orbital and spin
o=T1,] at s1te r. f; is the NN intraorbital hopping integral in
the longitudinal direction and *¢’ is the next NN interorbital
hopping integrals. #;,#' >0, and ¢’ is one order of magnitude
smaller than ¢,. Here \ is the atomic SOC strength.”8

We consider 1/N magnetic flux quantum per plaquette (N
is an integer), i.c., p=2n¢p;=2mwBa*/ ¢y=2m/N with a the
lattice constant and ¢y=hc/e the flux quantum. The Landau
gauge A=(0,-Bx,0) and the periodical boundary conditions
(PBCs) are adopted, and the magnetic unit cell has the size
Na X a. After the numerical diagonalization of the Hamil-
tonian, the zero-temperature HC is given by the Kubo
formula'!
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TABLE 1. Topological QPTs of p-band spinless fermions.
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FIG. 1. (Color online) (a) Hall conductance versus \ (unit: 7)) of
p-band spinless fermions at v=1/8 with N=4 and various ¢, ’s.
[(b)—(i)] The DOS for some ¢,’s and \’s in (a).
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with the system area A=L X L, the Fermi energy E, the ei-
genvalue &, and eigenstate |nk) of nth Landau subband, and
the summation over Kk is restricted to the magnetic Brillouin
zone (MBZ): —m/N=k,a<m/N and —m=k,a <. The ve-
locity operator is v=(i/A)[H,R] with R as the position op-
erator of fermions. When E falling in energy gaps, we can
rewrite oy as a'H(E):25n<50§{):e2/h25n<ECn, where ol
and C, are the HC and the Chern number (a topological
invariant of the MBZ) (Ref. 11) of the nth completely filled
subband, respectively. An IQH effect, characterized by non-
zero Chern integers, is a Fermi sea property.

With the Berry connection A, (k)=i{(nk|V,|nk) and Berry
curvature ,,(k)=V, X A, (k) defined, the quantized HC of a
completely filled nth subband can be written as (h/ ez)o”)
=(1/2m) [ [mpzQ5(K)d*k=(1/2m) $ypzA (k) - dk = I BZ/Z’IT
where I'}j;, is the Berry’s geometric phase factor of the cy-
clic evolution of |nk) along the MBZ boundary.!! For a par-
tially filled nth subband, the nonquantized part of the HC can
also be written as (h/ez) )=(1/2m) A, (K) - dk = Ff;”s)/Zﬂ'
where F(S is the Berry phase of the cyclic evolution of |nk)
along the Fermi surface (FS) and thus represents a TFL

property.'?

II1. p-BAND SPINLESS FERMIONS
A. Hall conductances

An overall picture of the HC oy calculated by Eq. (3) is
shown in Fig. 1 for p-band spinless fermions [Eq. (1)] with
N=4 (i.e., the flux strength (b::-‘ X 21r), 2048 X 2048 lattice
sites, fermion filling v=1/8, and various 7 ’s.

In the case of A=0, the lowest two subbands (each con-
tributes é to v) are not separated; they give rise to a total
Chern number +2. With \ increasing from 0O to 2.0 one sees
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a systematic evolution of oy versus \; for smaller 7, ’s, there
is a quantum-critical point (QCP) A.; at which the lowest
two subbands begin to separate; for larger 7, ’s, besides the
first QCP A, there is another QCP A, at which oy exhibits
a quantized jump.

At smaller ¢,’s (¢,=0.00,...,0.18), for A>\, (e.g.,
A =0.64 for ¢, =0.10), the lowest two subbands are well
separated since A lifts the p-orbital degeneracy and induces
a finite energy gap; the lowest subband is occupied by
pytip, fermions while the second lowest one by p.—ip,
fermions, each subband carrying a Chern number +1, and
oy=+1e*/h (ie., C;=+1) at v=1/8.

At larger ¢,’s (£, =0.20,0.25,0.30), for A> N\, (e.g., Ay
=0.97 for t,=0.30), the lowest two subbands are also
well separated; however, the lowest subband occupied by
p.+ip, fermions now gives a Chern number C;=-3. When A
increases further to another QCP \,, (e.g., Ao =1.59 for 7,
=0.30), oy exhibit a quantized jump from —3e%/h to +1e?/h
at v=1/8 (i.e., C, changes from -3 to +1).

The above behaviors of HCs have also been verified by
further numerical calculations of the cases with N
=6,...,16, various 7, ’s and »’s (Table I).

B. Berry curvatures

In order to reveal the nontrivial topological properties in k
space, we plot in Fig. 2 the sum of Berry curvatures over the
occupied subbands, ﬂz(k)=25n< £Q(Kk), in the reduced
MBZ (RMBZ) (-w/N=<k,a,k,a< /N) for some typical pa-
rameters corresponding to Fig. 1.

We first look into the case of #, =0.1 with only one A, (see
Fig. 1). For A<\, =0.64, e.g., A\=0.2 [Fig. 2(a)], Q%K)
displays the FS topology of two subbands: a hole FS of the
lowest subband near four corners of the RMBZ and an fer-
mion FS of the second lowest subband near the center of the
RMBZ. There are four small negative-2%(k) regions near the
hole FS. When M\ increases, the two subbands starts to sepa-
rate and two FSs shrinks gradually [Fig. 2(b)]. For A >\,
e.g., A=0.8 [Fig. 2(c)], the two subbands separates com-
pletely, both FSs vanishes, and Q%(k) displays four maxima
(which contribute to C;=+1) at the four RMBZ corners.

We then analyze the case of 7, =0.3 with two \.’s (Fig. 1).
For a small A=0.2 [Fig. 2(d)], Q%k) also displays the FS
topology of two subbands. Q%(k) displays four negative re-
gions between the hole and particle FSs. When M\ increases,
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FIG. 2. (Color online) Intensity plots of Berry curvatures Q(k)
in the RMBZ of p-band fermions at »=1/8 with N=4, various 7, ’s
and \’s.

e.g., A=0.5,0.8 [Figs. 2(e) and 2(f)], negative-Q*(Kk) regions
also increase, change their topology, and enclose the four
RMBZ corners, with the two FSs shrinking. When A in-
creases and passes \,;=0.97, e.g., \=1.2 [Fig. 2(g)], the two
subbands separates completely, and both FSs vanishes, and
Q%(k) displays four negative-Q%(k) minima (which contrib-
ute to C;=-3) at the four RMBZ corners. Near \,,=1.59
[Fig. 2(h)], four negative-Q%(k) minima at the RMBZ cor-
ners begin to vanish. When \ increases further and passes
Neas €.8., A=2.0 [Fig. 2(i)], the two subbands separates com-
pletely and four negative-Q%(k) minima vanishes, and are
replaced by positive-Q4(k) maxima (which contribute to
C,=+1 again) at the RMBZ corners.

C. Edge states

An alternative way to reveal different topological charac-
ters and QPTs is to calculate the edge states.'> Now as an
illustration, we take a cylinder of square lattice of the size
64 X with N=4 and 7, =0.30, and apply open boundary
condition in x direction and PBC in y direction.

Chern numbers of the bulk subbands are intimately re-
lated to the winding numbers of the corresponding edge
states.'> We here concentrate on the edge states between the
lowest two subbands shown in Fig. 3. For O0<A<A,
=(0.97 (see the ¢, =0.30 curve in Fig. 1), e.g., A=0.50 [Fig.
3(a)], there is one edge state winding between the lowest two
subbands, however, the Chern number of the lowest subband
C, is not well defined since the energy overlap of the two
subbands. For A,; <N <A,=1.59, e.g., A\=1.20 [Fig. 3(b)],
there is one edge state winding three times from the lowest
subband to the upper one then back to the lowest one which
corresponds to C;=-3. While \>\,,, e.g., A=2.00 [Fig.
3(d)], there is another edge state winding only once from the
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FIG. 3. (Color online) E(k,) of lowest two subbands and edge
states [shown as thick (red) lines] of p-band fermions in a 64 X
cylinder with ¢, =0.30 and various \’s.

upper subband to the lowest one then back to the upper one
which corresponds to C;=+1.

There is also a correspondence between the quantized
jumps of oy and the topological evolutions of bulk
spectra. %15 When approaching \.,, four pairs of Dirac
cones begin to form between the lowest two subbands and
each pair touch at one Dirac point when \.,=1.59 [Fig.
3(c)]. Meanwhile, a topological QPT happens at \,,, and a
Chern number +4 is transferred from the upper subband to
the lowest one, through abrupt changes of Berry curvatures
near Dirac points [Fig. 2(h)]. On contrary, at the first QCP
A.1=0.97, there is no Dirac point, and thus no quantized
jumps of oy.

IV. d-BAND SPINFUL FERMIONS

For d-band fermions [Eq. (2)] with additional spin degree
of freedom, some typical examples of the HC oy calculated
by Eq. (3) are shown in Fig. 4 for various N’s, v’s and #'’s.
We note that TFL-to-IQH transitions occur rather frequently
when tuning \ to critical values \.’s. Since now we have two
spin components, oy; may change either 2Ne?/h [e.g., the
t'=0.3 case in Fig. 4(a)] or Ne?/h [e.g., the ' =0.4 case in
Fig. 4(c)], after passing a TFL region or a quantized jump.
And we numerically confirmed that such topological QPTs
are also reflected in both Berry curvatures and edge states.

" (b) N=6,v=3/24,L=1152 "

" (a) N=4,v=2/16,L=1024 '

(c) N=6,v=6/24,L=1152
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FIG. 4. (Color online) oy (unit: e?/h) versus N (unit: #;) of
d-band spinful fermions at various N’s, v’s and '’s.
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FIG. 5. (Color online) S(q, ) versus @ of p-band fermions, at
various g,a=[m/32 (I=1,...,16 from bottom to top). [(a)—(d)] cor-
respond to Figs. 3(a)-3(d), respectively.

V. EXPERIMENTAL ISSUES

The required artificial magnetic flux in optical lattices is
suggested to be created by laser assisted tunneling between
internal atomic states or time-varying quadrupole potential'®
and is feasible as shown by recent experimental advances.!”
The rotation of each optical lattice site around its own site
center has been performed via electro-optic phase modula-
tion on laser beams'® and, in principle, can give rise to a
tunable orbital polarization.’

The direct detection of topological states through trans-
port measurement in cold atom experiments might be diffi-
cult. The Bragg spectroscopy provides a direct experimental
probe to detect the topological phase transitions'® by shining
two lasers on the whole lattice system including two
edges. This light Bragg scattering directly measures
the following dynamical structure factor: S(q,w)
=Ekl’kz|<fin,k2|Him|ini,k1>|25(hw—Ef(‘;‘+Eifl‘), where  Hjp,
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=3y, k, Qe [ini, Kk, )(fin, k,[+H.c. and the momentum trans-
fer and energy transfer between initial and final states are
related to the two laser beams (with k; , and o, ,) as q=k,
—k; and w=w,—w;. For the same cylinder system of Fig. 3,
S(q,w) indeed tell distinct features among topological and
critical phases. The multipeak structure near low frequency
appears for TFL with overlapping subbands [Fig. 5(a)]. Both
the low-frequency cutoffs of Figs. 5(b) and 5(d) state that the
system is in the IQH phases. And the low-frequency single
peak is a characteristic feature of a QCP [Fig. 5(c)].

VI. SUMMARY AND CONCLUSION

We show that in a multiorbital system with intraorbital
and interorbital hopping integrals, the HC may exhibit both
IQH-to-IQH transitions and anomalous TFL-to-IQH transi-
tions induced by on-site orbital polarization. Berry curva-
tures, edge states, and Bragg spectroscopy give further in-
sights to reveal various topological characters. The IQH-to-
IQH transitions also occur in single orbital systems and are
always accompanied by changes in Chern numbers; while
the unusual TFL-to-IQH transitions, not accompanied by the
changes in Chern numbers, but due to the evolutions of
Berry curvatures and Fermi surfaces of overlapping sub-
bands, are peculiar manifestations of orbital degeneracy and
spatial anisotropy.
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